8.2. Diferencia de Gaussianas

8.2.1. Visión general

Figura 17.164. Ejemplo de aplicación del filtro diferencias de gaussianas

Ejemplo de aplicación del filtro diferencias de gaussianas

Imagen original

Ejemplo de aplicación del filtro diferencias de gaussianas

Filtro Diferencia de gaussianas aplicado con radio 1 = 1.000 y radio 2 = 0.100.


This filter does edge detection using the so-called Difference of Gaussians algorithm, which works by performing two different Gaussian blurs on the image, with a different blurring radius for each, and subtracting them to yield the result.

This algorithm is very widely used in artificial vision, and is pretty fast because there are very efficient methods for doing Gaussian blurs.

8.2.2. Activating the Filter

This filter is found in the main menu under FiltersEdge-DetectDifference of Gaussians….

8.2.3. Opciones

Figura 17.165. Opciones del filtro diferencia de Gaussiana

Opciones del filtro diferencia de Gaussiana

Presets, Input Type, Recortar, Blending Options, Vista previa, Merge filter, Split view
[Nota] Nota

Estas opciones se describen en la Sección 2, “Características comunes”.

Radius 1, Radius 2

Radius 1 and Radius 2 are the blurring radii for the two Gaussian blurs. Increasing Radius 1 tends to give thicker-appearing edges, and decreasing the Radius 2 tends to increase the threshold for recognizing something as an edge.

If you want to produce something that looks like a sketch, in most cases setting Radius 2 smaller than Radius 1 will give better results.

In situations where you have a light figure on the dark background, reversing them may actually improve the result.