3.6. Filtro NL

3.6.1. Generalidades

Figura 16.24. Ejemplo de aplicación del filtro NL

Ejemplo de aplicación del filtro NL


Ejemplo de aplicación del filtro NL

Filtro NL aplicado

NL means Non Linear. Derived from the Unix pnmnlfilt program, it joins smoothing, despeckle and sharpen enhancement functions. It works on the whole layer, not on the selection.

Es un filtro multiuso. Tiene 3 modos distintos de operación. En todos los modos se examina cada píxel de la imagen y se procesan controlando el valor del píxel. Utiliza bloques hexagonales, en lugar de 3x3, cuyo tamaño se puede seleccionar con la opción radio.

3.6.2. Activating the filter

You can find this filter through FiltersEnhanceNL Filter.

The filter does not work if the active layer has an alpha channel. Then the menu entry is insensitive and grayed out.

3.6.3. Opciones

Figura 16.25. Opciones del Filtro NL

Opciones del “Filtro NL”

Vista previa

When checked, parameter setting results are interactively displayed in preview.


The Operating Mode is described below.


Controls the amount of the filter to apply. Valid range is 0.00-1.00. The exact meaning of this value depends on the selected operating mode. Note that this parameter is related to but not the same as the alpha parameter used in the pnmnlfilt program.


Controls the size of the effective sampling region around each pixel. The range of this value is 0.33-1.00, where 0.33 means just the pixel itself (and thus the filter will have no effect), and 1.00 means all pixels in the 3x3 grid are sampled.

3.6.4. Modos de operación

This filter can perform several distinct functions:

Alpha trimmed mean

The value of the center pixel will be replaced by the mean of the 7 hexagon values, but the 7 values are sorted by size and the top and bottom Alpha portion of the 7 are excluded from the mean. This implies that an Alpha value of 0.0 gives the same sort of output as a normal convolution (i.e. averaging or smoothing filter), where Radius will determine the strength of the filter. A good value to start from for subtle filtering is Alpha = 0.0, Radius = 0.55. For a more blatant effect, try Alpha = 0.0 and Radius = 1.0.

An Alpha value of 1.0 will cause the median value of the 7 hexagons to be used to replace the center pixel value. This sort of filter is good for eliminating pop or single pixel noise from an image without spreading the noise out or smudging features on the image. Judicious use of the Radius parameter will fine tune the filtering.

Intermediate values of Alpha give effects somewhere between smoothing and "pop" noise reduction. For subtle filtering try starting with values of Alpha = 0.8, Radius = 0.6. For a more blatant effect try Alpha = 1.0, Radius = 1.0 .

Optimal estimation

This type of filter applies a smoothing filter adaptively over the image. For each pixel the variance of the surrounding hexagon values is calculated, and the amount of smoothing is made inversely proportional to it. The idea is that if the variance is small then it is due to noise in the image, while if the variance is large, it is because of wanted image features. As usual the Radius parameter controls the effective radius, but it probably advisable to leave the radius between 0.8 and 1.0 for the variance calculation to be meaningful. The Alpha parameter sets the noise threshold, over which less smoothing will be done. This means that small values of Alpha will give the most subtle filtering effect, while large values will tend to smooth all parts of the image. You could start with values like Alpha = 0.2, Radius = 1.0, and try increasing or decreasing the Alpha parameter to get the desired effect. This type of filter is best for filtering out dithering noise in both bitmap and color images.

Edge enhancement

This is the opposite type of filter to the smoothing filter. It enhances edges. The Alpha parameter controls the amount of edge enhancement, from subtle (0.1) to blatant (0.9). The Radius parameter controls the effective radius as usual, but useful values are between 0.5 and 0.9. Try starting with values of Alpha = 0.3, Radius = 0.8.

Uso combinado

Los variados modos de operación se pueden usar uno detrás de otro para obtener el resultado deseado. Por ejemplo, para convertir una imagen monocromática difuminada en una imagen a escala de grises, podría intentar una o dos pasadasdel filtro de suavizado, seguido de un pase de estimación óptima, entonces un leve realce de bordes. Notese que el uso de realce de bordes solo es útil después de uno de los filtros no lineales (media limitada o estimación óptima), dado que realce de bordes es directamente opuesto la de suavizado.

For reducing color quantization noise in images (i.e. turning .gif files back into 24 bit files) you could try a pass of the optimal estimation filter (Alpha = 0.2, Radius = 1.0), a pass of the median filter (Alpha = 1.0, Radius = 0.55), and possibly a pass of the edge enhancement filter. Several passes of the optimal estimation filter with declining Alpha values are more effective than a single pass with a large Alpha value. As usual, there is a trade-off between filtering effectiveness and losing detail. Experimentation is encouraged.